cosmos.wikisort.org - Аппарат

Search / Calendar

«Вóяджер-2» (англ. Voyager 2) — действующий космический зонд, запущенный НАСА 20 августа 1977 года в рамках программы «Вояджер» для исследований дальних планет Солнечной системы. Первый и единственный земной космический аппарат, достигший Урана (в январе 1986 года) и Нептуна (в августе 1989 года). «Вояджер-2» более 25 лет удерживал рекорд по дальности достигнутого и изученного объекта Солнечной системы, пока его не превзошёл космический зонд "Новые горизонты", достигший Плутона (в июле 2015 года) и Аррокота (в январе 2019 года).

Вояджер-2
Voyager 2

«Вояджер»
Заказчик НАСА
Производитель США
Оператор НАСА
Задачи исследование дальних планет Солнечной системы
Пролёт Юпитер, Сатурн, Уран, Нептун
Стартовая площадка мыс Канаверал
Ракета-носитель Titan IIIE / «Центавр»
Запуск 20 августа 1977 14:29:00 UTC
Длительность полёта в полёте 45 лет 20 дней
COSPAR ID 1977-076A
SCN 10271
Технические характеристики
Масса 721,9 кг
Мощность 420 Вт
voyager.jpl.nasa.gov
 Медиафайлы на Викискладе

Актуальное расстояние от Земли и от Солнца до «Вояджера-2», а также его гелиоцентрическая скорость отображаются в режиме реального времени на сайте НАСА[1].


История


Снимок поверхности Европы
Снимок поверхности Европы
Фотография Энцелада
Фотография Энцелада

«Вояджер-2» стартовал 20 августа 1977 года, то есть на 16 дней раньше «Вояджера-1»[2].

Миссия «Вояджера-2» первоначально включала изучение только Юпитера и Сатурна, а также их спутников. Траектория полёта также предусматривала возможность пролёта мимо Урана и Нептуна, которая была успешно реализована.

Аппарат идентичен «Вояджеру-1». За счёт гравитационных манёвров у Юпитера, Сатурна и Урана «Вояджер-2» смог на 18 лет сократить срок полёта к Нептуну (по сравнению с полётом от Земли по гомановской траектории).

«Вояджер-2» близко подошёл к Европе и Ганимеду, галилеевым спутникам, не исследованным ранее «Вояджером-1». Переданные снимки позволили выдвинуть гипотезу о существовании жидкого океана под поверхностью Европы. Обследование самого крупного спутника в Солнечной системе — Ганимеда — показало, что он покрыт корой «грязного» льда, а его поверхность значительно старше поверхности Европы. После обследования спутников аппарат пролетел мимо Юпитера.
Траектория зонда прошла около спутников Сатурна Тефии и Энцелада, аппарат передал подробные фотографии поверхности спутников.
Аппарат передал на Землю тысячи снимков Урана, его спутников и колец. Благодаря этим фотографиям учёные обнаружили два новых кольца и исследовали девять уже известных. Помимо этого, были обнаружены 11 новых спутников Урана.
Снимки одной из лун — Миранды — удивили исследователей. Предполагается, что маленькие спутники быстро охлаждаются после своего образования, и представляют собой однообразную пустыню, испещрённую кратерами. Однако выяснилось, что на поверхности Миранды пролегают долины и горные хребты, среди которых были заметны скалистые утёсы. Это говорит о том, что история луны богата тектоническими и термальными явлениями.
«Вояджер-2» показал, что на обоих полюсах Урана температура оказалась одинаковой, хотя только один освещался Солнцем. Исследователи сделали вывод о наличии механизма передачи тепла из одной части планеты к другой. В среднем температура Урана составляет 59 К, или −214 °C[2].
Были получены уникальные снимки Нептуна и его крупного спутника Тритона. На Тритоне были обнаружены действующие гейзеры, что было очень неожиданным для удалённого от Солнца и холодного спутника. Были открыты 6 новых спутников Нептуна (Деспина, Галатея, Ларисса, Протей, Наяда и Таласса)[3].
Фотография Тритона
Фотография Тритона
Фото облаков Нептуна
Фото облаков Нептуна

Устройство аппарата


Масса аппарата при старте составляла 798 кг, масса полезной нагрузки — 86 кг. Длина — 2,5 м. Корпус аппарата — десятигранная призма с центральным проёмом. На корпус посажен отражатель направленной антенны диаметром 3,66 метра[16]. Электропитание обеспечивают три вынесенных на штанге радиоизотопных термоэлектрических генератора, использующих плутоний-238 в виде окиси (в силу удалённости от Солнца солнечные батареи были бы бесполезны). На момент старта общее тепловыделение генераторов составляло около 7 киловатт, их кремний-германиевые термопары обеспечивали 470 ватт электрической мощности[17]. По мере распада плутония-238 (его период полураспада составляет 87,7 года) и деградации термопар мощность термоэлектрических генераторов падает (при пролёте мимо Урана — 400 ватт). На 09.09.2022 остаток плутония-238 равен 70% от начального, к 2025 году тепловыделение упадёт до 68.8% от начального. Кроме штанги электрогенераторов, к корпусу прикреплены ещё две: штанга с научными приборами и отдельная штанга магнитометра[16].

На «Вояджере» установлены два компьютера, которые можно перепрограммировать, что позволяло менять научную программу и обходить возникающие неисправности. Объём оперативной памяти — два блока по 4096 восемнадцатиразрядных слов. Ёмкость запоминающего устройства — 67 мегабайт (до 100 изображений от телевизионных камер). В системе трёхосной ориентации используются два датчика Солнца, датчик звезды Канопус, инерциальный измерительный блок, а также 16 реактивных микродвигателей. В системе коррекции траектории используются 4 таких микродвигателя. Они рассчитаны на 8 коррекций при общем приращении скорости 200 м/сек.

Антенны две: ненаправленная и направленная. Обе антенны работают на частоте 2113 МГц на приём и 2295 МГц на передачу (S-диапазон), а направленная антенна — ещё и 8415 МГц на передачу (X-диапазон)[16]. Мощность излучения — 28 Вт в S-диапазоне, 23 Вт в X-диапазоне. Радиосистема «Вояджера» передавала поток информации со скоростью 115,2 кбит/с от Юпитера и 45 кбит/с — от Сатурна. Первоначально расчётная скорость передачи с Урана составляла лишь 4,6 кбит/с, однако её удалось повысить до 30 кбит/с, так как к тому времени была повышена чувствительность радиотелескопов на Земле. На определённом этапе миссии была реализована схема сжатия изображений, для чего был перепрограммирован бортовой компьютер. Также был задействован имевшийся на «Вояджере» экспериментальный кодировщик данных: схема коррекции ошибок в принимаемых и передаваемых данных была изменена с двоичного кода Голея на код Рида — Соломона, что сократило количество ошибок в 200 раз[18].

На борту аппарата закреплена золотая пластина, на которой для потенциальных инопланетян указаны координаты Солнечной системы и записан ряд земных звуков и изображений.

В комплект научной аппаратуры входят следующие приборы:

Большинство приборов вынесено на специальной штанге, часть из них установлена на поворотную платформу[16]. Корпус аппарата и приборы оборудованы разнообразной теплоизоляцией, тепловыми экранами, пластиковыми блендами.


Работоспособность и предполагаемая дальнейшая судьба аппарата


Хотя запланированный срок работы обоих «Вояджеров» давно истёк, часть их научных приборов продолжает работать. Аппаратура получает энергию от трёх радиоизотопных термоэлектрических генераторов, работающих на плутонии-238. На старте суммарная электрическая мощность генераторов составляла 470 ватт. Постепенно она снижается из-за распада плутония и деградации термопар. К 2012 году электрическая мощность упала примерно на 45 %. Тем не менее, ожидается, что минимально необходимое для исследований электроснабжение будет поддерживаться приблизительно до 2025 года[19].

В 2023 году «Вояджер-2» превзойдёт «Пионер-10» по расстоянию от Солнца, став вторым среди самых отдалённых космических аппаратов, созданных человечеством[20].

Примерно через 300 лет зонд достигнет внутреннего края Облака Оорта и ещё, вероятно, 30000 лет понадобится, чтобы покинуть его[8].

Через 40000 лет «Вояджер-2» пройдёт на расстоянии 1,7 светового года от звезды Росс 248[21].

Примерно через 296 тысяч лет «Вояджер-2» разойдётся с Сириусом на расстоянии 4,3 светового года[22].


Примечания


  1. Mission Status (англ.). Voyager. NASA Jet Propulsion Laboratory (JPL). Дата обращения: 14 ноября 2019. Архивировано 1 января 2018 года.
  2. Jia-Rui Cook. Voyager Celebrates 25 Years Since Uranus Visit. — NASA, 2011.
  3. Voyager - Mission Timeline (англ.). voyager.jpl.nasa.gov. Дата обращения: 6 июля 2022.
  4. Voyager 2 покидает Солнечную систему (недоступная ссылка). Дата обращения: 19 января 2020. Архивировано 6 ноября 2008 года.
  5. Космос-журнал: «Вояджер-2» меняет двигатели. Дата обращения: 17 ноября 2011. Архивировано 7 декабря 2011 года.
  6. Rosemary Sullivant. NASA - Voyager 2 to Switch to Backup Thruster Set (англ.). Voyager. NASA (5 ноября 2011). Дата обращения: 20 июня 2022.
  7. Аппарат «Вояджер-2» вышел в межзвездное пространство. Дата обращения: 11 декабря 2018. Архивировано 14 декабря 2018 года.
  8. NASA's Voyager 2 Probe Enters Interstellar Space (англ.). Voyager. NASA Jet Propulsion Laboratory (JPL) (10 декабря 2018). Дата обращения: 11 декабря 2018. Архивировано 11 декабря 2018 года.
  9. Burlaga L. F., Ness N. F., Berdichevsky D. B., Park J., Jian L. K., Szabo A., Stone E. C., Richardson J. D. Magnetic field and particle measurements made by Voyager 2 at and near the heliopause (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1007—1012. — ISSN 2397-3366. — doi:10.1038/s41550-019-0920-y. [исправить]
  10. Stone E. C., Cummings A. C., Heikkila B. C., Lal N. Cosmic ray measurements from Voyager 2 as it crossed into interstellar space (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1013—1018. — ISSN 2397-3366. — doi:10.1038/s41550-019-0928-3. [исправить]
  11. Krimigis S. M. et al. Energetic charged particle measurements from Voyager 2 at the heliopause and beyond (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 997—1006. — ISSN 2397-3366. — doi:10.1038/s41550-019-0927-4. [исправить]
  12. Gurnett D. A., Kurth W. S. Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1024—1028. — ISSN 2397-3366. — doi:10.1038/s41550-019-0918-5. [исправить]
  13. Richardson J. D., Belcher J. W., Garcia-Galindo P., Burlaga L. F. Voyager 2 plasma observations of the heliopause and interstellar medium (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1019—1023. — ISSN 2397-3366. — doi:10.1038/s41550-019-0929-2. [исправить]
  14. Voyager 2 Illuminates Boundary of Interstellar Space. Дата обращения: 5 ноября 2019. Архивировано 6 ноября 2019 года.
  15. «Вояджер-2» прислал на Землю данные из межзвездного пространства. Дата обращения: 5 ноября 2019. Архивировано 7 ноября 2019 года.
  16. Космонавтика, энциклопедия. М., 1985.
  17. Voyager 2 Host Information. (недоступная ссылка). Архивировано 11 ноября 2014 года. JPL
  18. Ludwig, R., Taylor J. Voyager Telecommunications (англ.). NASA. Дата обращения: 24 февраля 2021. Архивировано 18 марта 2021 года.
  19. Инженеры продлили жизнь станции Voyager до 2025 года (недоступная ссылка). Membrana.ru (19 января 2012). Дата обращения: 22 января 2012. Архивировано 8 февраля 2012 года.
  20. За 40 лет «Вояджеры» улетели за 20 млрд км от Земли, но продолжают работать. Вокруг Света Украина (26 апреля 2021). Дата обращения: 23 августа 2022.
  21. Борисов, Андрей. Путешествие в бездну. Lenta.ru (11 января 2017). Дата обращения: 11 декабря 2018. Архивировано 7 марта 2020 года.
  22. Interstellar Mission (англ.). Voyager. NASA Jet Propulsion Laboratory (JPL). Дата обращения: 11 декабря 2018. Архивировано 14 сентября 2017 года.

Литература



Ссылки



На других языках


[de] Voyager 2

Voyager 2 (englisch voyager ‚Reisender‘) ist eine Raumsonde der NASA zur Erforschung des äußeren Planetensystems im Rahmen des Voyager-Programms. Sie wurde am 20. August 1977 vom Launch Complex 41 auf Cape Canaveral mit einer Titan-IIIE-Centaur-Rakete gestartet. Die identisch aufgebaute Sonde Voyager 1 startete 16 Tage später auf einer anderen Flugbahn.

[en] Voyager 2

Voyager 2 is a space probe launched by NASA on August 20, 1977, to study the outer planets and interstellar space beyond the Sun's heliosphere. A part of the Voyager program, it was launched 16 days before its twin, Voyager 1, on a trajectory that took longer to reach gas giants Jupiter and Saturn but enabled further encounters with ice giants Uranus and Neptune.[4] Voyager 2 remains the only spacecraft to have visited a combination of either of the gas giants and both ice giant planets. Voyager 2 was the fourth of five spacecraft to achieve the Solar escape velocity, which allowed it to leave the Solar System.
- [ru] Вояджер-2



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.org - проект по пересортировке и дополнению контента Википедии