Nimbus 4 (also called Nimbus D) was a meteorological satellite. It was the fourth in a series of the Nimbus program.
![]() Artist rendering of the Nimbus 4. | |
Mission type | Weather satellite |
---|---|
Operator | NASA |
COSPAR ID | 1970-025A ![]() |
SATCAT no. | 4362 |
Mission duration | 10 years and 5 months |
Spacecraft properties | |
Manufacturer | RCA Astrospace |
Launch mass | 619.6 kilograms (1,366 lb)[1] |
Dimensions | 3.7 m × 1.5 m × 3.0 m (12.1 ft × 4.9 ft × 9.8 ft) |
Start of mission | |
Launch date | April 8, 1970, 08:17 (1970-04-08UTC08:17Z) UTC[2] |
Rocket | Thorad-SLV2G Agena-D |
Launch site | Vandenberg SLC-2E |
End of mission | |
Last contact | September 30, 1980 (1980-10-01) |
Decay date | September 30, 1980[3] |
Orbital parameters | |
Reference system | Geocentric |
Regime | Low Earth |
Eccentricity | 0.00107[1] |
Perigee altitude | 1,092 kilometers (679 mi)[1] |
Apogee altitude | 1,108 kilometers (688 mi)[1] |
Inclination | 80.114°[1] |
Period | 107.2 minutes[1] |
Epoch | April 8, 1970[1] |
Nimbus program Nimbus 5 → |
Nimbus 4 was launched on April 8, 1970, by a Thor-Agena rocket from Vandenberg Air Force Base, Lompoc, CA. The spacecraft functioned nominally until 30 Sep 1980. The satellite orbited the Earth once every 1 hour and 47 minutes, at an inclination of 80°. Its perigee was 1,092 kilometers (679 mi) and apogee was 1,108 kilometers (688 mi).[1]
Nimbus 4, the fourth in a series of second-generation meteorological research and development satellites, was designed to serve as a stabilized, earth-oriented platform for the testing of advanced meteorological sensor systems, and for collecting meteorological data. The polar-orbiting spacecraft consisted of three major structures: a ring-shaped sensor mount, solar paddles, and the control system housing.
The solar paddles and the control system were connected to the sensor mount by a truss structure, giving the satellite the appearance of an ocean buoy. Nimbus 4 was nearly 3.7 metres (12 ft) tall, 1.45 metres (4.8 ft) in diameter at the base, and about 3 metres (9.8 ft) across with solar paddles extended. The torus-shaped sensor mount, which formed the satellite base, housed the electronics equipment and battery modules. The lower surface of the torus ring provided mounting space for sensors and telemetry antennas. An H-frame structure mounted within the center of the torus provided support for the larger experiments and tape recorders. Mounted on the control system housing, which was on top of the spacecraft, were Sun sensors, horizon scanners, gas nozzles for attitude control, and a command antenna. Use of an advanced attitude-control subsystem permitted the spacecraft's orientation to be controlled to within plus or minus 1 deg for all three axes (pitch, roll, and yaw). Primary experiments consisted of:
The spacecraft performed well until 14 April 1971, when attitude problems started. The experiments operated on a limited time basis after that time until 30 September 1980.[4]
← 1969 · Orbital launches in 1970 · 1971 → | |
---|---|
Kosmos 318 | OPS 6531 | Intelsat III F-6 | Kosmos 319 | Kosmos 320 | Kosmos 321 | Kosmos 322 | ITOS-1 · Australis-OSCAR 5 | DS-P1-I No.6 | SERT-2 | E-8-5 No.405 | Kosmos 323 | Ohsumi | OPS 0054 | Molniya-1 No.17 | Kosmos 324 | Kosmos 325 | OPS 0440 · OPS 3402 | Wika · Mika | Kosmos 326 | Meteor No.14 | Kosmos 327 | NATO 2A | Kosmos 328 | Kosmos 329 | Kosmos 330 | Nimbus 4 · Topo-1 | Kosmos 331 | OPS 7033 · OPS 7044 | Kosmos 332 | Apollo 13 | Kosmos 333 | OPS 2863 | Intelsat III F-7 | Kosmos 334 | Dong Fang Hong 1 | Kosmos 335 | Kosmos 336 · Kosmos 337 · Kosmos 338 · Kosmos 339 · Kosmos 340 · Kosmos 341 · Kosmos 342 · Kosmos 343 | Meteor No.13 | Kosmos 344 | Kosmos 345 | OPS 4720 · OPS 8520 | DS-P1-Yu No.36 | Soyuz 9 | Kosmos 346 | STV-3 | Kosmos 347 | Kosmos 348 | Kosmos 349 | OPS 5346 | Meteor-M No.17 | OPS 6820 | Molniya-1 No.21 | Kosmos 350 | Kosmos 351 | Unnamed | Kosmos 352 | Kosmos 353 | Zenit-4 No.75 | OPS 4324 | Intelsat III F-8 | Kosmos 354 | Interkosmos 3 | Kosmos 355 | Kosmos 356 | Venera 7 | OPS 7874 | Skynet 1B | Kosmos 357 | Kosmos 358 | Kosmos 359 · Kosmos 359 | OPS 8329 | Transit O-19 | Kosmos 360 | OPS 7329 | Orba · X-2 | OPS 0203 | Kosmos 361 | Luna 16 | Kosmos 362 | Kosmos 363 | Kosmos 364 | MS-F1 | Kosmos 365 | Molniya-1 No.19 | Kosmos 366 | Kosmos 367 | Kosmos 368 · Nauka No.3 | Kosmos 369 | Kosmos 370 | Kosmos 371 | Interkosmos 4 | Meteor-M No.16 | Kosmos 372 | Kosmos 373 | Zond 8 | Kosmos 374 | OPS 7568 | Kosmos 375 | Kosmos 376 | OPS 5960 | OFO · RM-1 | Luna 17 (Lunokhod 1) | Kosmos 377 | Kosmos 378 | OPS 4992 · OPS 6829 | Kosmos 379 | Kosmos 380 | Molniya-1 No.23 | OAO-B | Kosmos 381 | Kosmos 382 | Kosmos 383 | Kosmos 384 · Nauka No.2 | NOAA-1 · CEPI | Uhuru | Kosmos 385 | Peole | Kosmos 386 | Kosmos 387 | Kosmos 388 | Kosmos 389 | DS-P1-M No.1 | Molniya-1 No.22 | |
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in (brackets). |
![]() | This article about one or more spacecraft of the United States is a stub. You can help Wikipedia by expanding it. |