OSCAR IV (a.k.a. OSCAR 4) was the fourth amateur radio satellite launched by Project OSCAR and the first targeted for Geostationary orbit on 12 December 1965. The satellite was launched piggyback with three United States Air Force satellites on a Titan IIIC launch vehicle. Due to a booster failure, OSCAR 4 was placed in an unplanned and largely unusable Geostationary transfer orbit.
![]() OSCAR 4 with exterior panels removed | |
Mission type | Communications |
---|---|
Operator | Project OSCAR / DoD |
COSPAR ID | 1965-108C ![]() |
SATCAT no. | 01902 |
Spacecraft properties | |
Launch mass | 18.1 kilograms (40 lb) |
Start of mission | |
Launch date | 21 December 1965 (1965-12-21) |
Rocket | Titan IIIC 3C-8 |
Launch site | Cape Canaveral LC-41 |
End of mission | |
Decay date | 12 April 1976 (12 April 1976) |
Orbital parameters | |
Reference system | Geocentric |
Regime | Geostationary (planned); Geostationary transfer orbit (actual) |
Eccentricity | 0.71843 |
Perigee altitude | 162 kilometers (101 mi) |
Apogee altitude | 33,561 kilometers (20,854 mi) |
Inclination | 26.80 degrees |
Period | 587.4 minutes |
Epoch | 20 December 1965 |
OSCAR OSCAR 5 → |
Project OSCAR Inc. was started in 1960 by members of the TRW Radio Club of Redondo Beach, California as well as persons associated with Foothill College to investigate the possibility of putting an amateur satellite in orbit. Project OSCAR was responsible for the construction of the first Amateur Radio Satellites: OSCAR 1,[1] launched from Vandenberg AFB in California on 12 December 1961, which transmitted a “HI” greeting in Morse Code for three weeks,[2] OSCAR 2, and OSCAR 3.[1]
OSCAR 4 massed 15 kilograms (33 lb) and was a regular tetrahedron with edges 48 centimetres (19 in) long. It had four independent monopole antennae and contained a tracking beacon transmitter and a communications repeater. It was powered by a solar cell array and batteries.[3] The satellite marked the first attempt for a High Earth Orbit (HEO) or GeoStationary Earth Orbit (GEO) amateur radio satellite, later categorized by AMSAT as Phase 3 and Phase 4. Improvements from prior OSCAR satellites included a higher power (3 Watt) 10 kHz wide linear transponder (144 MHz uplink and 432 MHz downlink), due to the higher planned orbit.[4]
OSCAR 4, along with LES-3, LES-4, and OV2-3, was launched on the third Titan IIIC test flight[5] on 22 December 1965 at 14:00:01 UT from Cape Canaveral LC41[6] just one second behind schedule. From an initial parking orbit of 194 kilometres (121 mi), the Titan's Transtage boosted into a transfer orbit pending a final burn to circularize its orbit. However, this final burn, scheduled for T+6:03:04 after liftoff,[5] never occurred due to a leaking valve in the booster's attitude control system.[7]: 422 OSCAR 4, LES-3 and LES-4, were released from the Transtage, albeit much later than intended, likely by the booster's backup timer;[5] OV2-3 remained attached and did not operate.[7]
The satellite remained in operation for 85 days, until 16 March 1966, and re-entered Earth's atmosphere on 12 April 1976.[8]
In 1969, AMSAT-NA was founded by radio amateurs working at NASA's Goddard Space Flight Center and the Baltimore-Washington DC region, to continue the efforts begun by Project OSCAR. Its first project was to coordinate the launch of Australis-OSCAR 5, constructed by students at the University of Melbourne.[4]
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.
← 1964 · Orbital launches in 1965 · 1966 → | |
---|---|
Kosmos 52 | OPS 3928 | OPS 7040 | OV1-1 | TIROS-9 | OPS 4703 | Kosmos 53 | OSO-2 | LES-1 | DS-P1-Yu No.2 | Apollo AS-103 · Pegasus 1 | Ranger 8 | DS-A1 No.6 | Kosmos 54 · Kosmos 55 · Kosmos 56 | Kosmos 57 | OPS 4782 | Kosmos 58 | Surveyor SD-1 | Kosmos 59 | NRL PL142 · GGSE-2 · GGSE-3 · SECOR 3 · Solrad 7B · Surcal 4 · Dodecapole 1 · OSCAR 3 | OPS 7087 · SECOR 2 | Kosmos 60 | OPS 4920 | Kosmos 61 · Kosmos 62 · Kosmos 63 | OPS 7353 | Voskhod 2 | Ranger 9 | Gemini III | Kosmos 64 | OPS 4803 | OPS 4682 · SECOR 4 | Intelsat I F1 | Luna E-6 No.8 | Kosmos 65 | Molniya 1-01 | OPS 4983 · OPS 6717 | Explorer 27 | OPS 5023 | LES-2 · LCS-1 | Kosmos 66 | Luna 5 | OPS 8431 | OPS 8386 | Apollo AS-104 · Pegasus 2 | Kosmos 67 | OPS 5236 | OV1-3 | Explorer 28 | Gemini IV | Luna 6 | OPS 8425 | Kosmos 68 | Titan 3C-7 | OPS 8480 | Kosmos 69 | OPS 5501 · OPS 6749 | TIROS-10 | Kosmos 70 | OPS 5810 | Zenit-2 No.28 | Kosmos 71 · Kosmos 72 · Kosmos 73 · Kosmos 74 · Kosmos 75 | Proton 1 | OPS 8411 | Zond 3 | OPS 5543 | OPS 6577 · OPS 6564 · ERS-17 | Kosmos 76 | Apollo AS-105 · Pegasus 3 | Kosmos 77 | OPS 5698 · OPS 6761 | SEV · SECOR 5 | Surveyor SD-2 | OPS 8464 · Dodecapole 2 · Tempsat-1 · Long Rod · Calsphere 4A · Surcal 5 | Kosmos 78 | OPS 7208 | Gemini V (REP) | Kosmos 79 | OSO-C | OPS 3373 | Kosmos 80 · Kosmos 81 · Kosmos 82 · Kosmos 83 · Kosmos 84 | Kosmos 85 | OPS 8068 | Kosmos 86 · Kosmos 87 · Kosmos 88 · Kosmos 89 · Kosmos 90 | OPS 7221 | Kosmos 91 | OPS 7208 | Luna 7 | OV1-2 | OPS 5325 | OGO-2 | Molniya 1-02 | OV2-1 · LCS-2 | Kosmos 92 | Kosmos 93 | GATV 5002 | Kosmos 94 | OPS 2155 | Proton 2 | Kosmos 95 | Explorer 29 | OPS 8293 · OPS 6232 | Venera 2 | Venera 3 | Solrad 8 | Kosmos 96 | Kosmos 97 | Astérix | Kosmos 98 | Alouette 2 · Explorer 31 | Luna 8 | Gemini VII | FR-1 | OPS 7249 | Kosmos 99 | Gemini VIA | Pioneer 6 | Kosmos 100 | Kosmos 101 | OV2-3 · LES-3 · LES-4 · OSCAR 4 | OPS 1509 | OPS 4639 | Kosmos 102 | Kosmos 103 | DS-K-40 No.1 | |
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in brackets. |
OSCAR satellites | ||
---|---|---|
Satellites |
|