Orbiting Vehicle 1-4 (also known as OV1-4), launched 30 Mar 1966, was the fourth, and second successful, satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-4 was a long-term bioscience and materials science satellite, designed to return data relevant to long-term human presence in space. Its launch marked the first time two satellites (the other being OV1-5) were placed into orbit side by side with each other.
![]() OV1 series satellite | |
Mission type | Earth science |
---|---|
Operator | USAF |
COSPAR ID | 1966-025A ![]() |
SATCAT no. | S02121 |
Spacecraft properties | |
Manufacturer | General Dynamics |
Launch mass | 87.6 kg (193 lb) with Altair |
Start of mission | |
Launch date | 30 Mar 1966 09:20:12 (1966-03-30UTC09:20:12) UTC |
Rocket | Atlas D |
Launch site | Vandenberg 576-B-3[1] |
Orbital parameters | |
Regime | Low Earth Orbit |
Eccentricity | 0.00846 |
Perigee altitude | 887.00 km (551.16 mi) |
Apogee altitude | 1,011.00 km (628.21 mi) |
Inclination | 144.500° |
Period | 104.10 minutes [2] |
Epoch | 1966-03-30 09:21:00 |
OV1 |
The Orbiting Vehicle satellite program arose from a US Air Force initiative, begun in the early 1960s, to reduce the expense of space research. Through this initiative, satellites would be standardized to improve reliability and cost-efficiency, and where possible, they would fly on test vehicles or be piggybacked with other satellites. In 1961, the Air Force Office of Aerospace Research (OAR) created the Aerospace Research Support Program (ARSP) to request satellite research proposals and choose mission experiments. The USAF Space and Missiles Organization created their own analog of the ARSP called the Space Experiments Support Program (SESP), which sponsored a greater proportion of technological experiments than the ARSP.[3]: 417 Five distinct OV series of standardized satellites were developed under the auspices of these agencies.[3]: 425
The OV1 series was an evolution of the 2.7 m "Scientific Passenger Pods" (SPP), which, starting on 2 October 1961, rode piggyback on suborbital Atlas missile tests and conducted scientific experiments during their short time in space. General Dynamics received a $2 million contract on 13 September 1963 to build a new version of the SPP (called the Atlas Retained Structure (ARS)) that would carry a self-orbiting satellite. Once the Atlas missile and ARS reached apogee, the satellite inside would be deployed and thrust itself into orbit. In addition to the orbital SPP, General Dynamics would create six of these satellites, each to be 3.66 m (12.0 ft) long with a diameter of .762 m (2 ft 6.0 in), able to carry a 136 kg (300 lb) payload into a circular 805 km (500 mi) orbit.
Dubbed "Satellite for Aerospace Research" (SATAR), the series of satellites was originally to be launched from the Eastern Test Range on Atlas missions testing experimental Advanced Ballistic Re-Entry System (ABRES) nosecones. However, in 1964, the Air Force transferred ABRES launches to the Western Test Range causing a year's delay for the program. Moreover, because WTR launches would be into polar orbit as opposed to the low-inclination orbits typical of ETR launches, less mass could be lofted into orbit using the same thrust, and the mass of the SATAR satellites had to be reduced.[3]: 417 The OV1 program was managed by Lt. Col. Clyde Northcott, Jr.[4]
The first OV1 satellite to be launched was OV1-1 on January 21, 1965. Though OV1-1's Atlas booster performed properly, the satellite's onboard Altair rocket did not fire, and the probe was lost. OV1-1 was the only satellite launched on an ABRES mission. Starting with OV1-3, launched and lost May 27, 1965, the remaining OV1 satellites all flew on Atlas D and F missiles that had been decommissioned from ICBM duty (except OV1-6, which flew on the Manned Orbiting Laboratory test flight on 2 November 1966).[3]: 418–422 OV1-2, the first successful satellite in the OV1 series, was launched 5 October 1965.[3]: 418–419 OV1-2 pioneered the back-to-back launch configuration under which two OV1 satellites could be carried on the same rocket, although OV1-2 flew alone. This configuration would be used in the co-launch of OV1-4 and OV1-5.[5]
OV1-4 was, like the rest of the OV1 satellite series, 1.387 m (4 ft 6.6 in) long and .69 m (2 ft 3 in) in diameter, consisting of a cylindrical experiment housing capped with flattened cones on both ends[6] containing 5000 solar cells producing 22 watts of power. Two .46 m (1 ft 6 in) antennae for transmitting telemetry and receiving commands extended from the sides of the spacecraft. 12 helium-pressurized hydrogen peroxide thrusters provided attitude control.[3]: 418
OV1-4 weighed, with its attached Altair booster, 87.6 kg (193 lb).[2]
OV1-4 carried an experiment package provided by the Aerospace Medical Division at Brooks Air Force Base in Texas. Two of the experiments monitored the growth and oxygen production/carbon dioxide absorption properties of several generations chlorella algae and duckweed plants. The data collected over the course of the 30-day mission was applicable to future life support systems incorporating live plants in microgravity.[3]: 419
Another experiment investigated the thermal-control properties of various paints and metallic substances produced by the Materials Laboratory at Wright-Patterson Air Force Base.[3]: 419
There was also equipment for measuring the long term radiation dose received inside the satellite[7] including a Tissue Equivalent Ionization Chamber (TEIC).[8]
Launched from Vandenberg's 576-B-3 launch pad on 30 Mar 1966 at 09:20:12 UTC via Atlas D rocket,[1] OV1-4 and the co-launched OV1-5 were the first satellites to be placed into orbit side-by-side (as opposed to serially.[9] OV1-4 and OV1-5 had similar but not identical low orbits.[10] The OV1-4 mission was successful, and several journal articles incorporating data from the radiation detecting instruments were published.[7][11] The data from OV1-4's TEIC was compared to a similar chamber orbited on Gemini 4; it was extrapolated that astronauts traveling at OV1-4's altitude (~950 km (590 mi)) would receive 4 rads per day at a 30° inclination orbit or 1.5 rads per day at a 90° (polar) inclination orbit.[8]
As of 23 March 2021, OV1-4 is still in orbit, and its position can be tracked on-line.[12]
The OV1 program ultimately comprised 22 missions, the last flying on 19 September 1971.[3]: 421
← 1965 · Orbital launches in 1966 · 1967 → | |
---|---|
Kosmos 104 | OPS 2394 | OPS 7253 · OPS 3179 | Kosmos 105 | Kosmos 106 | OPS 1593 | Luna 9 | OPS 7291 | ESSA-1 | OPS 1439 | Kosmos 107 | Kosmos 108 | OPS 1184 · OPS 3011 · OPS 3031 | Dipason | Kosmos 109 | DS-K-40 No.2 | Kosmos 110 | ESSA-2 | Kosmos 111 | OPS 3488 | GATV-5003 | Gemini VIII | Kosmos 112 | OPS 0879 · OPS 0974 | Kosmos 113 | N-4 No.3 | OPS 1117 | Molniya-1 No.5 | OV1-4 · OV1-5 | OPS 0340 | Luna 10 | Kosmos 114 | OPS 1612 | Surveyor SD-3 | OAO-1 | OPS 0910 | Kosmos 115 | OV3-1 | Molniya 1-03 | Kosmos 116 | OPS 1508 | Kosmos 117 | Kosmos 118 | OPS 1950 · OPS 6785 | Nimbus 2 | Zenit-4 | GATV-5004 | OPS 0082 | OPS 1788 | Kosmos 119 | Explorer 32 | Surveyor 1 | ATDA | Gemini IX-A | OPS 1577 · OPS 1856 | OGO-3 | Kosmos 120 | OV3-4 | FTV-1351 · Secor 6 · ERS-16 | OPS 9311 · OPS 9312 · OPS 9313 · OPS 9314 · OPS 9315 · OPS 9316 · OPS 9317 · GGTS | Kosmos 121 | OPS 1599 | PAGEOS | Kosmos 122 | Explorer 33 | AS-203 | Proton 3 | Kosmos 123 | OPS 1850 | OV1-7 · OV1-8 | Kosmos 124 | GATV-5005 | Gemini X | Kosmos 125 | Kosmos 126 | OPS 3014 | OV3-3 | Kosmos 127 | OPS 1545 | Lunar Orbiter 1 | OPS 1832 · OPS 6810 | Pioneer 7 | OPS 2366 | FTV-1352 · Secor 7 · ERS-15 | Luna 11 | IDSCP 1 · IDSCP 2 · IDSCP 3 · IDSCP 4 · IDSCP 5 · IDSCP 6 · IDSCP 7 · GGTS | Kosmos 128 | GATV-5006 | Gemini XI | OPS 6026 | OPS 1686 · OPS 6874 | Zenit-2 No.40 | OPS 6026 | OPS 1686 · OPS 6874 | OGCh No.05L | Surveyor 2 | OPS 1703 | Ōsumi 1 | OPS 4096 | ESSA-3 | FTV-1583 · Secor 8 | OPS 2055 · OPS 5345 | Kosmos 129 | Molniya 1-04 | Kosmos 130 | Luna 12 | Surveyor SM-3 | Intelsat II F-1 | OV3-2 | OGCh No.06L | OPS 2070 · OPS 5424 | OPS 0855 · OV4-1R · OV4-1T · OV1-6 | Lunar Orbiter 2 | OPS 1866 | GATV-5001A | Gemini XII | Kosmos 131 | Strela-2 No.1 | Kosmos 132 | Kosmos 133 | Kosmos 134 | OPS 1890 | ATS-1 | OV1-9 · OV1-10 | Kosmos 135 | Soyuz 7K-OK No.1 | OPS 8968 | Biosatellite 1 | Kosmos 136 | Ōsumi 2 | Kosmos 137 | Luna 13 | OPS 1584 | |
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in brackets. |