AS-203 (or SA-203) was an uncrewed flight of the Saturn IB rocket on July 5, 1966. It carried no command and service module, as its purpose was to verify the design of the S-IVB rocket stage restart capability that would later be used in the Apollo program to boost astronauts from Earth orbit to a trajectory towards the Moon. It achieved its objectives, but the stage was inadvertently destroyed after four orbits.
![]() | This article needs additional citations for verification. (August 2010) |
![]() Launch of AS-203 | |
Mission type | Launch vehicle development |
---|---|
Operator | NASA |
COSPAR ID | 1966-059A ![]() |
SATCAT no. | 2289 |
Mission duration | ~6 hours |
Distance travelled | 161,900 kilometers (87,400 nmi) |
Orbits completed | 4 |
Spacecraft properties | |
Spacecraft | None |
Start of mission | |
Launch date | July 5, 1966, 14:53:13 (1966-07-05UTC14:53:13Z) UTC |
Rocket | Saturn IB SA-203 |
Launch site | Cape Kennedy LC-37B |
End of mission | |
Destroyed | July 5, 1966 (1966-07-06) |
Orbital parameters | |
Reference system | Geocentric |
Regime | Low Earth orbit |
Perigee altitude | 184 kilometers (99 nmi) |
Apogee altitude | 214 kilometers (116 nmi) |
Inclination | 31.9 degrees |
Period | 88.47 minutes |
Epoch | July 5, 1966[1] |
Apollo program ← AS-201 AS-202 → |
The purpose of the AS-203 flight was to investigate the effects of weightlessness on the liquid hydrogen fuel in the S-IVB-200 second-stage tank. The lunar missions would use a modified version of the S-IVB-200, the S-IVB-500, as the third stage of the Saturn V launch vehicle. This called for the stage to fire briefly to put the spacecraft into a parking Earth orbit, before restarting the engine for flight to the Moon. In order to design this capability, engineers needed to verify that the anti-slosh measures designed to control the hydrogen's location in the tank were adequate, and that the fuel lines and engines could be kept at the proper temperatures to allow engine restart.[2]
In order to keep residual propellants in the tanks on orbit, there would be no command and service module payload as there was on AS-201 and AS-202. This was replaced by an aerodynamic nose cone. Also, the full load of liquid oxygen oxidizer was shorted slightly so that the amount of hydrogen remaining would approximate that of the Saturn V parking orbit.[2] The tank was equipped with 88 sensors and two TV cameras to record the fuel's behavior.
This was also the first launch of a Saturn IB from Pad 37B.
In the spring of 1966, the decision was made to launch AS-203 before AS-202, as the CSM that was to be flown on AS-202 was delayed. The S-IVB stage arrived at Cape Kennedy on 6 April 1966; the S-IB first stage arrived six days later, and the Instrument Unit came two days after that.
On April 19, technicians began to erect the booster at Pad 37B. Once again, the testing regimen ran into problems that had plagued AS-201, including cracked solder joints in the printed-circuit boards, requiring over 8,000 to be replaced.
In June 1966, three Saturn rockets could be seen set up on various pads across the Cape: at Pad 39A was a full-size mock-up of the Saturn V; AS-202 was at Pad 34; and AS-203 was at 37B.
The rocket launched on the first attempt on July 5. The S-IVB and Instrument Unit (IU) were inserted into a 100-nautical-mile (190 km; 120 mi) circular orbit.
The S-IVB design test objectives were carried out on the first two orbits, and the hydrogen was found to behave mostly as predicted, with sufficient control over its location and of engine temperatures required for restart. The next two orbits were used for extra experiments to obtain information for use in future cryogenic stage designs. These included a free-coast experiment to observe and control the negative acceleration of the fuel caused by the small amount of aerodynamic drag on the vehicle; a rapid fuel tank depressurization test; and a closed fuel tank pressurization test.
The closed fuel tank experiment involved pressurizing the hydrogen tank by closing its vents, while depressurizing the oxygen tank by allowing it to continue venting. It was expected that the pressure difference between the two tanks (measured as high as 39.4 pounds per square inch (272 kPa) would collapse the common bulkhead separating them, as happened in a ground test. The rupture must have occurred during the two-minute loss of signal between the Manned Spacecraft Center and the Trinidad tracking station. The Trinidad radar image indicated the vehicle was in multiple pieces, and telemetry was never re-acquired. NASA concluded that a spark or impact must have ignited the propellants, causing an explosion.
Despite the destruction of the stage, the mission was classified as a success, having achieved all of its primary objectives and validating the design concept of the restartable S-IVB-500 version. In September Douglas Aircraft Company, which built the S-IVB, declared that the design was ready for use on the Saturn V to send men to the Moon.
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.
Apollo program | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||
Launch complexes |
| ![]() | |||||||||
Ground facilities |
| ||||||||||
Launch vehicles |
| ||||||||||
Spacecraft and rover |
| ||||||||||
Flights |
| ||||||||||
Apollo 8 specific |
| ||||||||||
Apollo 11 specific |
| ||||||||||
Apollo 12 specific |
| ||||||||||
Apollo 13 specific |
| ||||||||||
Apollo 14 specific |
| ||||||||||
Apollo 15 specific |
| ||||||||||
Apollo 16 specific |
| ||||||||||
Apollo 17 specific |
| ||||||||||
Post-Apollo capsule use | |||||||||||
|
← 1965 · Orbital launches in 1966 · 1967 → | |
---|---|
Kosmos 104 | OPS 2394 | OPS 7253 · OPS 3179 | Kosmos 105 | Kosmos 106 | OPS 1593 | Luna 9 | OPS 7291 | ESSA-1 | OPS 1439 | Kosmos 107 | Kosmos 108 | OPS 1184 · OPS 3011 · OPS 3031 | Dipason | Kosmos 109 | DS-K-40 No.2 | Kosmos 110 | ESSA-2 | Kosmos 111 | OPS 3488 | GATV-5003 | Gemini VIII | Kosmos 112 | OPS 0879 · OPS 0974 | Kosmos 113 | N-4 No.3 | OPS 1117 | Molniya-1 No.5 | OV1-4 · OV1-5 | OPS 0340 | Luna 10 | Kosmos 114 | OPS 1612 | Surveyor SD-3 | OAO-1 | OPS 0910 | Kosmos 115 | OV3-1 | Molniya 1-03 | Kosmos 116 | OPS 1508 | Kosmos 117 | Kosmos 118 | OPS 1950 · OPS 6785 | Nimbus 2 | Zenit-4 | GATV-5004 | OPS 0082 | OPS 1788 | Kosmos 119 | Explorer 32 | Surveyor 1 | ATDA | Gemini IX-A | OPS 1577 · OPS 1856 | OGO-3 | Kosmos 120 | OV3-4 | FTV-1351 · Secor 6 · ERS-16 | OPS 9311 · OPS 9312 · OPS 9313 · OPS 9314 · OPS 9315 · OPS 9316 · OPS 9317 · GGTS | Kosmos 121 | OPS 1599 | PAGEOS | Kosmos 122 | Explorer 33 | AS-203 | Proton 3 | Kosmos 123 | OPS 1850 | OV1-7 · OV1-8 | Kosmos 124 | GATV-5005 | Gemini X | Kosmos 125 | Kosmos 126 | OPS 3014 | OV3-3 | Kosmos 127 | OPS 1545 | Lunar Orbiter 1 | OPS 1832 · OPS 6810 | Pioneer 7 | OPS 2366 | FTV-1352 · Secor 7 · ERS-15 | Luna 11 | IDSCP 1 · IDSCP 2 · IDSCP 3 · IDSCP 4 · IDSCP 5 · IDSCP 6 · IDSCP 7 · GGTS | Kosmos 128 | GATV-5006 | Gemini XI | OPS 6026 | OPS 1686 · OPS 6874 | Zenit-2 No.40 | OPS 6026 | OPS 1686 · OPS 6874 | OGCh No.05L | Surveyor 2 | OPS 1703 | Ōsumi 1 | OPS 4096 | ESSA-3 | FTV-1583 · Secor 8 | OPS 2055 · OPS 5345 | Kosmos 129 | Molniya 1-04 | Kosmos 130 | Luna 12 | Surveyor SM-3 | Intelsat II F-1 | OV3-2 | OGCh No.06L | OPS 2070 · OPS 5424 | OPS 0855 · OV4-1R · OV4-1T · OV1-6 | Lunar Orbiter 2 | OPS 1866 | GATV-5001A | Gemini XII | Kosmos 131 | Strela-2 No.1 | Kosmos 132 | Kosmos 133 | Kosmos 134 | OPS 1890 | ATS-1 | OV1-9 · OV1-10 | Kosmos 135 | Soyuz 7K-OK No.1 | OPS 8968 | Biosatellite 1 | Kosmos 136 | Ōsumi 2 | Kosmos 137 | Luna 13 | OPS 1584 | |
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in brackets. |