AS-101 (also designated SA-6) was the sixth flight of the Saturn I launch vehicle, which carried the first boilerplate Apollo spacecraft into low Earth orbit.[2][3] The test took place on May 28, 1964, lasting for four orbits (about six hours). The spacecraft and its upper stage completed a total of 54 orbits before reentering the atmosphere and crashing in the Pacific Ocean on June 1, 1964.
![]() AS-101 (SA-6) | |
Mission type | Spacecraft aerodynamics |
---|---|
Operator | NASA |
COSPAR ID | 1964-025A ![]() |
SATCAT no. | 800 |
Mission duration | ~5 hours, 53 minutes |
Orbits completed | 54 |
Spacecraft properties | |
Spacecraft | Apollo BP-13 |
Launch mass | 7,700 kilograms (17,000 lb) |
Start of mission | |
Launch date | May 28, 1964, 17:07:00 (1964-05-28UTC17:07Z) UTC |
Rocket | Saturn I SA-6 |
Launch site | Cape Kennedy LC-37B |
End of mission | |
Disposal | Uncontrolled reentry |
Last contact | May 28, 1964 (1964-05-29) after 4 orbits |
Decay date | June 1, 1964 |
Orbital parameters | |
Reference system | Geocentric |
Regime | Low Earth orbit |
Perigee altitude | 178 kilometers (96 nmi) |
Apogee altitude | 199 kilometers (107 nmi) |
Inclination | 31.7 degrees |
Period | 88.26 minutes |
Epoch | 30 May 1964[1] |
Apollo program |
The flight experienced a single anomaly: one of the eight first-stage Saturn I engines shut down early, but the guidance system compensated by burning the remaining seven engines longer. AS-101 was followed by four more flights to verify the launch aerodynamics of the Apollo command and service module (CSM) and its launch escape system (LES) tower.
The first five launches of the Saturn I had carried Jupiter nosecones, a proven design which allowed engineers to focus on development of the rocket. To verify the launch aerodynamics of the CSM, AS-101 carried BP-13, a boilerplate spacecraft that weighed 17,000 pounds (7,700 kg) and duplicated the size and shape of the CSM, and a dummy LES tower. A flight-weight command module (CM) weighed around 12,000 pounds (5,400 kg).[3] The boilerplate spacecraft was instrumented with 116 sensors reading strain, pressure, temperature, heat flux, and acceleration.
It took three attempts to launch the rocket from Cape Kennedy Air Force Station Space Launch Complex 37B. The first attempt was scrubbed after the liquid oxygen damaged a wire mesh screen during a test, causing fuel contamination. The second attempt was scrubbed after the rocket's guidance system overheated due to failure of an air conditioning compressor.
The vehicle finally lifted off on May 28, 1964. There had been several delays during the countdown as liquid oxygen vapors obscured an optical window in the SA-6's instrument unit, so that a ground-based theodolite could not see it. This theodolite was required by the countdown computer in order for launch to proceed. Engineers deemed it non-critical and reprogrammed the computer, allowing the launch to proceed.
The ascent was normal up to 116.9 seconds after liftoff, at which point engine number eight shut off early. This was not planned, as it had been on SA-4 as a test, but the rocket compensated perfectly by burning the remaining fuel in the other seven engines for 2.7 seconds longer than planned. The first stage separated and the second stage ignited. Ten seconds later, the launch escape system was jettisoned as planned. Also jettisoned from the first stage were eight film cameras that observed separation of the stages.
The second stage cut off at 624.5 seconds after launch (1.26 seconds earlier than predicted), with the stage and boilerplate spacecraft in a 182 kilometers (98 nautical miles) by 227 kilometers (123 nautical miles) orbit. It continued to transmit data for four orbits, after which the batteries failed. The vehicle made a total of 54 orbits, re-entering the atmosphere east of Kanton Island in the Pacific Ocean on June 1.
Engineers were quick to find the cause of the failure of engine number eight. The teeth on one of the gears in the turbopump were stripped off. This did not cause any delays in the next launches as engineers had already decided that the gear design was inferior and were planning to change it for the next launch. This was the only problem encountered with an H-1 engine during a flight.
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.
![]() |
Wikimedia Commons has media related to Saturn-Apollo 6. |
Apollo program | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||
Launch complexes |
| ![]() | |||||||||
Ground facilities |
| ||||||||||
Launch vehicles |
| ||||||||||
Spacecraft and rover |
| ||||||||||
Flights |
| ||||||||||
Apollo 8 specific |
| ||||||||||
Apollo 11 specific |
| ||||||||||
Apollo 12 specific |
| ||||||||||
Apollo 13 specific |
| ||||||||||
Apollo 14 specific |
| ||||||||||
Apollo 15 specific |
| ||||||||||
Apollo 16 specific |
| ||||||||||
Apollo 17 specific |
| ||||||||||
Post-Apollo capsule use | |||||||||||
|
← 1963 · Orbital launches in 1964 · 1965 → | |
---|---|
Poppy 3 · GGSE-1 · SOLRAD 7A · SECOR 1 | OPS 3367A · OPS 3367B | Relay 2 | Echo 2 | Jupiter Nosecone | Elektron 1 · Elektron 2 | Ranger 6 | OPS 3444 | Zond 3MV-1 No.2 | Kosmos 25 | OPS 2423 | OPS 3722 | OPS 3435 | Kosmos 26 | BE-A | Luna E-6 No.6 | OPS 3467 | Kosmos 27 | Ariel 2 | Zond 1 | Kosmos 28 | Gemini 1 | Polyot 2 | Luna E-6 No.5 | Transit 5BN-3 · Transit 5E-4 | OPS 3743 | Kosmos 29 | OPS 2921 | Kosmos 30 | OPS 3592 | Apollo AS-101 | OPS 4412 | OPS 3483 | Molniya-1 No.2 | Kosmos 31 | Kosmos 32 | OPS 3236 | OPS 4467A · OPS 4467B | OPS 3754 | Kosmos 33 | ESRS | Atlas-Centaur 3 | Kosmos 34 | OPS 3395 | OPS 3684 · OPS 4923 | Elektron 3 · Elektron 4 | OPS 3491 | Kosmos 35 | Vela 2A · Vela 2B · ERS-13 | Ranger 7 | Kosmos 36 | OPS 3042 | Kosmos 37 | OPS 3802 · OPS 3216 | Kosmos 38 · Kosmos 39 · Kosmos 40 | Syncom 3 | OPS 2739 | Kosmos 41 | Kosmos 42 · Kosmos 43 | Kosmos 44 | Titan 3A-2 | OGO-1 | Kosmos 45 | OPS 3497 | Apollo AS-102 | OPS 4262 | Kosmos 46 | Explorer 21 | OPS 3333 | Kosmos 47 | OPS 5798 · Dragsphere 1 · Dragsphere 2 | OPS 4036 | Explorer 22 | Voskhod 1 | Kosmos 48 | OPS 3559 | Strela-1 No.6 · Strela-1 No.7 · Strela-1 No.8 | OPS 4384 · OPS 5063 | Kosmos 49 | Kosmos 50 | OPS 5434 | OPS 3062 | Mariner 3 | Explorer 23 | OPS 3360 | Explorer 24 · Explorer 25 | Mariner 4 | Zond 2 | DS-2 No.2 | OPS 4439 | Kosmos 51 | Titan 3A-1 | Surveyor Mass Model | OPS 6582 · Transit 5E-5 | San Marco 1 | OPS 3358 | Explorer 26 | OPS 3762 | |
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in brackets. |