cosmos.wikisort.org - Spacecraft

Search / Calendar

The TIMED (Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics) mission is dedicated to study the influences energetics and dynamics of the Sun and humans on the least explored and understood region of Earth's atmosphere – the Mesosphere and Lower Thermosphere / Ionosphere (MLTI). The mission was launched from Vandenberg Air Force Base in California on 7 December 2001 aboard a Delta II rocket launch vehicle. The project is sponsored and managed by NASA, while the spacecraft was designed and assembled by the Applied Physics Laboratory at Johns Hopkins University. The mission has been extended several times, and has now collected data over an entire solar cycle, which helps in its goal to differentiate the Sun's effects on the atmosphere from other effects.[2] TIMED Was Launched Alongside Jason-1.

TIMED
TIMED in low Earth orbit
NamesThermosphere • Ionosphere • Mesosphere • Energetics and Dynamics
Mission typeIonosphere
Atmospheric science
Space weather research
OperatorNASA
COSPAR ID2001-055B
SATCAT no.26998
WebsiteTIMED at APL
Mission durationPlanned: 2 years
Elapsed: 20 years, 8 months, 13 days
Spacecraft properties
ManufacturerApplied Physics Laboratory
Launch mass660 kg (1,460 lb)
Dimensions2.72 meters high
11.73 meters wide
1.2 meters deep
Power406 watts
Start of mission
Launch date7 December 2001, 15:07:35 UTC
RocketDelta II 7920-10
(Delta D289)
Launch siteVandenberg, SLC-2W
Entered service22 January 2002
Orbital parameters
Reference systemGeocentric orbit[1]
RegimeLow Earth orbit
Altitude625 km (388 mi)
Inclination74.1°
Period97.3 minutes
Solar Terrestrial Probes program
Hinode 
 

Atmospheric region under study


TIMED Mission diagram (NASA)
TIMED Mission diagram (NASA)

The Mesosphere, Lower Thermosphere and Ionosphere (MLTI) region of the atmosphere to be studied by TIMED is located between 60 and 180 kilometres (37 and 112 mi) above the Earth's surface, where energy from solar radiation is first deposited into the atmosphere. This can have profound effects on Earth's upper atmospheric regions, particularly during the peak of the Sun's 11-year solar cycle when the greatest amounts of its energy are being released. Understanding these interactions is also important for our understanding of various subjects in geophysics, meteorology, aeronomy, and atmospheric science, as solar radiation is one of the primary driving forces behind atmospheric tides. Changes in the MLT can also affect modern satellite and radio telecommunications.


Scientific instruments


The spacecraft payload consists of the following four main instruments:

The data collected by the satellite's instruments are made freely available to the public.[3]


Specifications


[citation needed]


Satellite operations


TIMED experienced minor problems with attitude control when, after launch, the magnetorquers failed to slow the spacecraft's spin as intended. An engineer installing the magnetorquers had mistakenly recorded the reverse of their actual polarities, which generated a sign error in the flight software. The problem was fixed by temporarily disabling the orbiter's magnetic field sensor and uploading a software patch to fix the sign error.[4] In a separate incident, another software update fixed a problem caused by faulty testing of the sun sensors. After these corrections, the attitude control system functioned as intended.[4]


Scientific results


TIMED has improved scientific understanding of long-term trends in the upper atmosphere. The SABER instrument has collected a continuous record of water vapor and carbon dioxide levels in the stratosphere and mesosphere.[5][6]

SABER is able to collect 1,500 water vapor measurements per day, a vast improvement from previous satellites and ground-based observations.[7] SABER had a flaw in its optical filter that caused it to overestimate water vapor levels; this error was discovered and the data were corrected.[8] Based on the corrected data, SABER found that between 2002 and 2018, water vapor levels in the lower stratosphere were increasing at an average rate of 0.25 ppmv (around 5%) per decade, and in the upper stratosphere and mesosphere, water vapor levels were increasing at an average rate of 0.1-0.2 ppmv (around 2-3%) per decade.[9] Growth in methane levels is thought to be partially responsible for the growth in water vapor levels, as methane decomposes[clarification needed] into carbon dioxide and water vapor, but changes driven by the solar cycle may also be responsible.[10]

SABER has also monitored carbon dioxide levels in the upper atmosphere. The instrument found that carbon dioxide levels in the upper atmosphere are increasing: at an altitude of 110 kilometres (68 mi), CO2 levels were rising at an average rate of 12% per decade.[11] This rate is faster than what has been predicted by climate models, and suggests that there is more vertical mixing of CO2 than previously thought.[12]

By collecting upper atmosphere data, TIMED assists the modeling of environmental impacts. Water vapor and carbon dioxide are greenhouse gases and their growth in the upper atmosphere must be factored into climate models. Additionally, upper atmosphere water vapor contributes to ozone depletion.[13]



Instrument teams



United States



International

  • Hovemere Limited, Kent, England, United Kingdom
  • British Antarctic Survey, Cambridge, England, United Kingdom
  • CREES-York University, Toronto, Ontario, Canada
  • Astrophysical Institute of Andalucia (IAA), Granada, Spain
  • Rostock University, Rostock, Germany

See also



References


  1. "Trajectory: TIMED 2001-055B". NASA. 14 May 2020. Retrieved 23 November 2020. This article incorporates text from this source, which is in the public domain.
  2. Fox, Karen. "Ten Successful Years of Mapping the Middle Atmosphere". NASA. This article incorporates text from this source, which is in the public domain.
  3. "TIMED SDS Data Product Downloads". Johns Hopkins University Applied Physics Laboratory. Retrieved 15 September 2020.
  4. Harland, David M.; Lorenz, Ralph D. (2006). Space Systems Failures: Disasters and Rescues of Satellites, Rockets, and Space Probes. Berlin: Springer. pp. 214–215.
  5. Yue 2019, p. 13452.
  6. Yue 2015, p. 7195.
  7. Yue 2019, p. 13458.
  8. Rong 2019, p. 3-4.
  9. Yue 2019, p. 13456.
  10. Yue 2019, pp. 13456, 13458.
  11. Yue 2015, p. 7197.
  12. Yue 2015, p. 7198.
  13. Yue 2019, p. 13459.

Further reading





На других языках


[de] TIMED

Die Mission TIMED (englisch Thermosphere Ionosphere Mesosphere Energetics and Dynamics) ist ein Projekt, um die Dynamik in der Mesosphäre und der unteren Thermosphäre der Erdatmosphäre zu untersuchen.
- [en] TIMED

[es] TIMED

TIMED (acrónimo de Thermosphere Ionosphere Mesosphere Energetics and Dynamics) es un satélite artificial de la NASA dedicado al estudio de la ionosfera y termosfera terrestres. Fue lanzado el 7 de diciembre de 2001 desde la Base Aérea de Vandenberg mediante un cohete Delta.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии