USA-10, also known as Navstar 11, GPS I-11 and GPS SVN-11, was an American navigation satellite launched in 1985 as part of the Global Positioning System development programme. It was the last of eleven Block I GPS satellites to be launched.[2]
Names | Navstar 11 GPS I-11 GPS SVN-11 |
---|---|
Mission type | Navigation Technology |
Operator | U.S. Air Force |
COSPAR ID | 1985-093A [1] |
SATCAT no. | 16129 |
Mission duration | 5 years (planned) 8.5 years (achieved) |
Spacecraft properties | |
Spacecraft | Navstar |
Spacecraft type | GPS Block I |
Manufacturer | Rockwell Space Systems[2] |
Launch mass | 758 kg (1,671 lb) [2] |
Dimensions | 5.3 meters of long |
Power | 400 watts |
Start of mission | |
Launch date | 9 October 1985, 02:53 UTC |
Rocket | Atlas E / SGS-2 (Atlas-55E) [3] |
Launch site | Vandenberg, SLC-3W[3] |
Contractor | Convair General Dynamics |
Entered service | 8 November 1985 |
End of mission | |
Deactivated | 14 April 1994 |
Orbital parameters | |
Reference system | Geocentric orbit[1] |
Regime | Medium Earth orbit (Semi-synchronous) |
Perigee altitude | 19,829 km (12,321 mi) |
Apogee altitude | 20,532 km (12,758 mi) |
Inclination | 63.40° |
Period | 717.90 minutes |
Global Positioning System |
Global Positioning System (GPS) was developed by the U.S. Department of Defense to provide all-weather round-the-clock navigation capabilities for military ground, sea, and air forces. Since its implementation, GPS has also become an integral asset in numerous civilian applications and industries around the globe, including recreational used (e.g., boating, aircraft, hiking), corporate vehicle fleet tracking, and surveying. GPS employs 24 spacecraft in 20,200 km circular orbits inclined at 55°. These vehicles are placed in 6 orbit planes with four operational satellites in each plane.[1]
The first eleven spacecraft (GPS Block 1) were used to demonstrate the feasibility of the GPS system. They were 3-axis stabilized, nadir pointing using reaction wheels. Dual solar arrays supplied over 400 watts. They had S-band communications for control and telemetry and Ultra high frequency (UHF) cross-link between spacecraft. They were manufactured by Rockwell Space Systems, were 5.3 meters across with solar panels deployed, and had a design life expectancy of 5 years. Unlike the later operational satellites, GPS Block 1 spacecraft were inclined at 63°.[1]
USA-10 was launched at 02:53 UTC on 9 October 1985, atop an Atlas E launch vehicle with an SGS-2 upper stage. The Atlas used had the serial number 55E, and was originally built as an Atlas E.[3] The launch took place from Space Launch Complex 3W at Vandenberg Air Force Base,[4] and placed USA-10 into a transfer orbit. The satellite raised itself into medium Earth orbit using a Star-27 apogee motor.[2]
By 8 November 1985, USA-10 had been raised to an orbit with a perigee of 19,829 km (12,321 mi), an apogee of 20,532 km (12,758 mi), a period of 717.90 minutes, and 63.40° of inclination to the equator.[5] The satellite had a design life of 5 years and a mass of 758 kg (1,671 lb).[2] It broadcast the PRN 03 signal in the GPS demonstration constellation, and was retired from service on 14 April 1994.
NAVSTAR Global Positioning System satellites | |
---|---|
List of GPS satellites | |
Block I | |
Block II | |
Block IIA | |
Block IIR | |
Block IIRM | |
Block IIF | |
Block III | |
Block IIIF |
|
Italics indicate future missions. Signs † indicate launch failures. |
← 1984 · Orbital launches in 1985 · 1986 → | |
---|---|
Sakigake | Kosmos 1616 | Kosmos 1617 · Kosmos 1618 · Kosmos 1619 · Kosmos 1620 · Kosmos 1621 · Kosmos 1622 | Molniya-3 No.36 | Kosmos 1623 | Kosmos 1624 | Gorizont No.21L | Kosmos 1625 | Kosmos 1626 | STS-51-C (USA-8) | Kosmos 1627 | Kosmos 1628 | Meteor-2 No.13 | USA-9 | Arabsat-1A · Brasilsat A1 | Kosmos 1629 | Kosmos 1630 | Kosmos 1631 | Kosmos 1632 | Kosmos 1633 | Geosat | Kosmos 1634 | Kosmos 1635 · Kosmos 1636 · Kosmos 1637 · Kosmos 1638 · Kosmos 1639 · Kosmos 1640 · Kosmos 1641 · Kosmos 1642 | Ekran No.28L | Intelsat VA F-10 | Kosmos 1643 | Kosmos 1644 | STS-51-D (Anik C1 · Leasat 3) | Unnamed | Kosmos 1645 | Kosmos 1646 | Kosmos 1647 | Kosmos 1648 | Prognoz 10 | STS-51-B (Nusat) | GStar-1 · Telecom 1B | Kosmos 1649 | Kosmos 1650 · Kosmos 1651 · Kosmos 1652 | Kosmos 1653 | Kosmos 1654 | Molniya-3 No.39 | Kosmos 1655 | Kosmos 1656 | Soyuz T-13 | Kosmos 1657 | Kosmos 1658 | Kosmos 1659 | Kosmos 1660 | STS-51-G (Morelos 1 · Arabsat-1B · Telstar 3D · SPARTAN-101) | Kosmos 1661 | Kosmos 1662 | Progress 24 | Kosmos 1663 | Unnamed | Kosmos 1664 | Intelsat VA F-11 | Giotto | Kosmos 1665 | Kosmos 1666 | Kosmos 1667 | Kosmos 1668 | Molniya-3 No.37 | Kosmos 1669 | STS-51-F (PDP) | Kosmos 1670 | Kosmos 1671 | Transit-O 24 · Transit-O 30 | Kosmos 1672 · Kosmos 1672 | Kosmos 1673 | Kosmos 1674 | Gran' No.26L | Kosmos 1675 | Kosmos 1676 | Suisei | Molniya-1 No.61 | Kosmos 1677 | STS-51-I (Aussat A1 · ASC-1 · Leasat 4) | Unnamed | Kosmos 1678 | Kosmos 1679 | Kosmos 1680 | Kosmos 1681 | ECS-3 · Spacenet 3 | Soyuz T-14 | Kosmos 1682 | Kosmos 1683 | Kosmos 1684 | Kosmos 1685 | Kosmos 1686 | Intelsat VA F-12 | Kosmos 1687 | Kosmos 1688 | Kosmos 1689 | Molniya-3 No.38 | STS-51-J (USA-11 · USA-12) | USA-10 | Kosmos 1690 · Kosmos 1695 · Kosmos 1692 · Kosmos 1693 · Kosmos 1694 · Kosmos 1691 | Kosmos 1696 | Fanhui Shi Weixing 8 | Kosmos 1697 | Kosmos 1698 | Molniya-1 No.73 | Unnamed | Meteor-3 No.2 | Kosmos 1699 | Kosmos 1700 | Molniya-1 No.56 | STS-61-A (GLOMR) | Kosmos 1701 | Kosmos 1702 | Gran' No.28L | Kosmos 1703 | STS-61-B (Morelos 2 · Aussat A2 · Satcom K2 · OEX · EASE/ACCESS) | Kosmos 1704 | Kosmos 1705 | Kosmos 1706 | Kosmos 1707 | USA-13 · USA-14 | Kosmos 1708 | Kosmos 1709 | Molniya-3 No.40 | Kosmos 1710 · Kosmos 1711 · Kosmos 1712 | Meteor-2 No.14 | Kosmos 1713 | Kosmos 1714 | |
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in (brackets). |