cosmos.wikisort.org - Spacecraft

Search / Calendar

The Solar Radiation and Climate Experiment (SORCE) was a NASA-sponsored satellite mission that measured incoming X-ray, ultraviolet, visible, near-infrared, and total solar radiation.[2] These measurements specifically addressed long-term climate change, natural variability, atmospheric ozone, and UV-B radiation, enhancing climate prediction. These measurements are critical to studies of the Sun, its effect on our Earth system, and its influence on humankind. SORCE was launched on 25 January 2003 on a Pegasus XL launch vehicle to provide NASA's Earth Science Enterprise (ESE) with precise measurements of solar radiation.

Solar Radiation and Climate Experiment
Solar Radiation and Climate Experiment satellite
NamesSORCE
Mission typeAstrophysics
OperatorNASA, LASP at University of Colorado Boulder
COSPAR ID2003-004A
SATCAT no.27651
Websitehttps://lasp.colorado.edu/sorce/
Mission duration5 years (planned)
19 years, 8 months and 1 day (in orbit)
Spacecraft properties
Spacecraft typeSolar Radiation and Climate Experiment
Launch mass315 kg (694 lb)
Dry mass290 kg (640 lb)
Start of mission
Launch date25 January 2003, 20:13:35 UTC
RocketPegasus XL
Launch siteCape Canaveral (CCAFS),
Lockheed L-1011 TriStar
ContractorOrbital Sciences Corporation
End of mission
DisposalDecay in 2032 (planned)
Deactivated25 February 2020
Orbital parameters
Reference systemGeocentric orbit[1]
RegimeGeosynchronous orbit
Altitude645 km (401 mi)
Inclination40.00°
Period97.19 minutes
Instruments
TIM - Total Irradiance Monitor
SOLSTICE - Solar Stellar Irradiance Comparison Experiment
SIM - Spectral Irradiance Monitor
XPS = XUV Photometer System
 

SORCE measured the Sun's output using radiometers, spectrometers, photodiodes, detectors, and bolometers mounted on a satellite observatory orbiting the Earth. Spectral measurements identify the irradiance of the Sun by characterizing the Sun's energy and emissions in the form of color that can then be translated into quantities and elements of matter. Data obtained by SORCE can be used to model the Sun's output and to explain and predict the effect of the Sun's radiation on the Earth's atmosphere and climate.

Flying in a 645 km (401 mi) orbit at a 40.0° inclination, SORCE was operated by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, Colorado. It continued the precise measurements of total solar irradiance that began with the ERB instrument in 1979 and extended to the 21st century with the ACRIM series of measurements. SORCE provided measurements of the solar spectral irradiance from 1 to 2000 nm, accounting for 95% of the spectral contribution to the total solar irradiance.


Objectives


The science objectives of the SORCE mission were:[3]


Experiments


SORCE carried four instruments, including the Total Irradiance Monitor (TIM), Solar Stellar Irradiance Comparison Experiment (SOLSTICE), Spectral Irradiance Monitor (SIM), and the XUV Photometer System (XPS):


Total Irradiation Monitor (TIM)


TIM (Total Irradiation Monitor) was a 7.9 kg, 14 watts instrument that covered all visual and infrared wavelengths at an irradiance accuracy of one part in 10000. It used differential, heat-sensitive resisters as detectors.[4]


Spectral Irradiance Monitor (SIM)


SIM (Spectral Irradiance Monitor) was a 22 kg, 25 watts rotating Fery prism spectrometer with a bolometer output that covered the 200-2400 nm band at a resolution of a few nm, and at an irradiance accuracy of three parts in ten thousand.[5]


Solar Stellar Irradiance Comparison Experiment (SOLSTICE)


SOLSTICE (SOlar STellar Irradiance Comparison Experiment) A and B are 36 kg, 33 watts, UV grating spectrometers with photomultiplier detectors that covered the 115-320 nm band at a resolution of 0.1 nm, and at an irradiance accuracy of about 4%. It used an ensemble of bright stars (selected for their stable luminosities) as calibrators for the instrument variability.[6]


Extreme Ultraviolet Photometer System (XPS)


XPS (XUV Photometer System) was a 3.6 kg, 9 watts photometer which invoked filters to monitor the X-ray and UV band at 1-34 nm, at a resolution of about seven nm, and at an irradiance accuracy of about 15%.[7]


End of mission


NASA decommissioned SORCE on 25 February 2020, after 17 years of operation (over three times the original design life of five years). The spacecraft had struggled with battery degradation problems since 2011, which prevented SORCE from conducting measurements full-time. Ground teams switched to daytime-only observations, effectively allowing SORCE to operate with no functioning battery through its solar panels.[8]

NASA planned to keep operating SORCE until a replacement could be developed and launched. The Glory satellite, which would have continued SORCE's observations, was lost in a launch failure in 2011. A stopgap solar irradiance instrument, the Total Solar Irradiance Calibration Transfer Experiment (TCTE), was launched in November 2013 on the U.S. Air Force's STPSat-3,[9] but a full replacement for SORCE did not launch until December 2017, when the Total and Spectral solar Irradiance Sensor (TSPS) was delivered to the International Space Station (ISS).[8]

Left to drift in orbit, SORCE is projected to re-enter the atmosphere in 2032, with most of the spacecraft expected to burn up during re-entry.[8]


See also



References


  1. "SDO 2010-005A". N2YO. 24 January 2015. Retrieved 25 January 2015.
  2. "SORCE". LASP. Retrieved 19 October 2011. This article incorporates text from this source, which is in the public domain.
  3. "Objectives". Laboratory for Atmospheric and Space Physics (LASP). Retrieved 31 December 2016. This article incorporates text from this source, which is in the public domain.
  4. "Total Irradiation Monitor (TIM)". NSSDC. NASA. 14 May 2020. Retrieved 19 January 2021. This article incorporates text from this source, which is in the public domain.
  5. "Spectral Irradiance Monitor (SIM)". NSSDC. NASA. 14 May 2020. Retrieved 19 January 2021. This article incorporates text from this source, which is in the public domain.
  6. "Solar Stellar Irradiance Comparison Experiment (SOLSTICE)". NSSDC. NASA. 14 May 2020. Retrieved 19 January 2021. This article incorporates text from this source, which is in the public domain.
  7. "Extreme Ultraviolet Photometer System (XPS)". NSSDC. NASA. 14 May 2020. Retrieved 19 January 2021. This article incorporates text from this source, which is in the public domain.
  8. Clark, Stephen (10 April 2020). "NASA satellite ends 17-year mission measuring the sun's impact on climate". Spaceflight Now. Retrieved 21 April 2020.
  9. "TCTE Mission Ends". Laboratory for Atmospheric and Space Physics (LASP). 24 July 2019. Retrieved 21 April 2020. This article incorporates text from this source, which is in the public domain.



На других языках


[de] Solar Radiation and Climate Experiment

Solar Radiation and Climate Experiment (SORCE) ist ein Satellitenobservatorium der NASA, mit dem der Einfluss der Energieabstrahlung der Sonne auf das Klima und die Atmosphäre der Erde untersucht werden soll. SORCE war Bestandteil der Earth Observing Systems.
- [en] Solar Radiation and Climate Experiment

[es] Solar Radiation and Climate Experiment

Solar Radiation and Climate Experiment (acrónimo SORCE) fue un satélite artificial de la NASA destinado a medir la radiación solar (en el espectro de rayos X, ultravioleta, visible e infrarrojo cercano) que llega a la Tierra para mejorar el conocimiento del clima y mejorar las predicciones climáticas, así como obtener datos sobre el ozono atmosférico.[1] Para realizar las medidas, SORCE utiliza radiómetros, espectrómetros, fotodiodos y bolómetros.[2]



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.org - проект по пересортировке и дополнению контента Википедии